FINAL TEST SERIES XI JEE
 TEST-04 ANSWER KEY

Test Date :09-02-2020

[PHYSICS]

1. (A) Bouyancy force acts at point ' O '

The torque of bouyancy about the point C is clockwise
2. (C)

$\mathrm{m} \times 10=\mathrm{mv}_{1}+\mathrm{mv}_{1}$
$\Rightarrow 10=v_{1}+v_{2}$
and $\frac{1}{2} \times 10=\mathrm{v}_{2}-\mathrm{v}_{1}$
Fromi and ii

$$
\mathrm{v}_{1}=\frac{5}{2} \mathrm{~m} / \mathrm{s} ; \mathrm{v}_{2}=\frac{15}{2} \mathrm{~m} / \mathrm{s}
$$

Distance between the two blocks

$$
\begin{aligned}
& S=\left(-v_{1}+v_{2}\right) \cdot t \\
& =\left(-\frac{5}{2}+\frac{15}{2}\right) \times 5=25 \mathrm{~m}
\end{aligned}
$$

3. (D) $F=m a=5\left(x^{2}-3 x+2\right) ; F=0 \Rightarrow \quad x=1$ and 2
$\frac{d F}{d x}=5(2 x-3) ;$ at $x=1 \quad \frac{d F}{d x}=-v e \Rightarrow$ stable equilibrium
and at $\mathrm{t}=2 \quad \frac{\mathrm{dF}}{\mathrm{dx}}=+\mathrm{ve} \Rightarrow$ unstable equilibrium
4. (A) For antinode $f_{1}=\frac{\left(2 n_{1}-1\right)}{4 \ell} \sqrt{\frac{\ell}{\mu}}$

$$
\mathrm{f}_{2}=\frac{\left(2 \mathrm{n}_{2}-1\right)}{4 \ell} \sqrt{\frac{\ell}{9 \mu}}=\frac{\left(2 \mathrm{n}_{2}-1\right)}{12 \ell} \sqrt{\frac{\ell}{\mu}}
$$

$$
\mathrm{f}=\frac{1}{4 \ell} \sqrt{\frac{\ell}{\mu}} \quad \frac{\left(2 \mathrm{n}_{1}-1\right)}{4 \ell}=\frac{2 \mathrm{n}_{2}-1}{12 \ell}
$$

$6 n_{1}-3=2 n_{2}-1$
$6 n_{1}-2 n_{2}=2$
$\mathrm{n}_{1}=1, \mathrm{n}_{2}=2$
$3 n_{1}-n_{2}=1$
5. (B)

$I_{n e t}=\int(d m) X^{2}$
$I_{\text {net }}=\int_{x=0}^{x=2}\left(10 x^{2} d x\right) x^{2}$
$\mathrm{I}_{\text {net }}=64$ unit
6. (B) Applying angular momentum conservation about the rotating axis
$\mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{f}}$
$\mathrm{O}+\mathrm{mvR}=\left(\frac{\mathrm{mR}^{2}}{2}+\mathrm{mR}^{2}\right) \omega_{\mathrm{f}}$
$\omega=\frac{2 V}{3 R}$
7. (B) It is obvious that particle at 0.2 L will
have larger amplitude that particle at $0.45 \mathrm{~L}, 0.5 \mathrm{~L}$ being the node and 0.25 being antinode

8. (A) Initially distance of suspension point from $\mathrm{CM}=\ell=\frac{1}{2} \mathrm{~m}$

To get the same time period, we can hinge the rod at dis-
tance $\frac{\mathrm{K}_{\mathrm{cm}}^{2}}{\ell}=\frac{\left(\frac{1}{\sqrt{12}}\right)^{2}}{1 / 2}=\frac{1}{6} \mathrm{~m}$
Here $\mathrm{I}_{\mathrm{cm}}=\frac{\mathrm{mL}^{2}}{12}=\mathrm{mK}_{\mathrm{cm}}^{2} \Rightarrow \mathrm{~K}_{\mathrm{cm}}=\frac{\mathrm{L}}{\sqrt{12}}=\frac{1}{\sqrt{12}}$
9. (C) The coefficient of viscosity is the ratio of tangential stress on top surface of film (exerted by block) to that of velocity gradient (vertically downwards) of film. Since mass m moves with constant velocity, the string exerts a force equal to mg on plate towards right. Hence oil shall exert tangential force mg on plate towards left.
$\therefore \quad \eta=\frac{\mathrm{F} / \mathrm{A}}{(\mathrm{v}-0) \Delta \mathrm{x}}=\frac{125 \times 1000 / 10 \times 20}{(5.0) / 0.02}=2.5 \mathrm{dyne}-\mathrm{s} / \mathrm{cm}^{2}$
10. (A)

$\mathrm{v} \sin \theta=\mathrm{e} u \cos \theta$
$\mathrm{v} \cos \theta=\mathrm{u} \sin \theta$
$\tan \theta=\frac{\mathrm{e}}{\tan \theta}$
$\mathrm{e}=\tan ^{2} \theta=\frac{1}{3}$
11. (B) $\mathrm{Mgx}=\frac{1}{2} \mathrm{kx}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}+\frac{1}{2} \mathrm{Mv}^{2}$
$1 \times 10 \times 0.1=\frac{1}{2}\left[50(0.1)^{2}+\frac{1}{2}(0.2)\left(\frac{\mathrm{V}}{0.2}\right)^{2}+\frac{\mathrm{V}^{2}}{2}\right]$
$\Rightarrow \mathrm{V}=\frac{1}{2} \mathrm{~m} / \mathrm{s}$
12. (B) $\frac{25-0}{100}=\frac{\mathrm{P}-25}{200} \Rightarrow \quad \mathrm{P}=75^{\circ}$
13. (C) As the ball ascends upwards in addition to weight, air friction also acts downwards. Hence the initial magnitude of acceleration will be greater than magnitude of acceleration due to gravity. So the only possible option is

14. (C) $\frac{R^{\prime}}{t^{\prime}}=\frac{R(1+\alpha \Delta \theta)}{t(1+\alpha \Delta \theta)}=1000$. Hence the ratio $\frac{t}{R}$ will remain constant on heating
15 (B) $\mathrm{F}_{\text {net }}=\mathrm{F}_{\text {dynamic }}+\mathrm{F}_{\text {static }}$
At any time t when x length is on the table then :

$$
\begin{aligned}
& \mathrm{F}_{\text {static }}=\mathrm{x} \lambda \mathrm{~g} \\
& \quad \mathrm{~F}_{\text {dynamic }}=\mathrm{v}_{\text {rel }}\left(\frac{\lambda \mathrm{dx}}{\mathrm{dt}}\right)=\sqrt{2 \mathrm{gx}} \times \lambda \sqrt{2 \mathrm{gx}}=2 \mathrm{gx} \lambda \\
& \quad \mathrm{~F}_{\text {dynamic }}=3 \times\left(\frac{1}{2} \mathrm{gt}^{2}\right) \lambda \mathrm{g} \\
& \Rightarrow \quad \mathrm{~F}_{\text {net }}=3 \lambda \mathrm{~g} 1 / 2 \mathrm{gt}^{2} \\
& \quad=\frac{3}{2} \lambda \mathrm{~g}^{2} \mathrm{t}^{2}=\frac{3}{2} \frac{\mathrm{mg}^{2} \mathrm{t}^{2}}{\ell}
\end{aligned}
$$

At $t=\sqrt{2 \ell / g}$ all the chain will be on table so $\mathrm{F}_{\text {net }}=0+\mathrm{mg}$ (since at this position $\mathrm{F}_{\mathrm{dyn}}=0$)
So the correct graph is represented by option (b)

16. (B) $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}$

$$
\Rightarrow \quad \mathrm{R}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{3.0 \times 6.0}{9.0}=2.0 \Omega
$$

$\therefore \quad+\frac{\delta \mathrm{R}}{\mathrm{R}^{2}}=+\frac{\delta \mathrm{R}_{1}}{\mathrm{R}_{1}^{2}}+\frac{\delta \mathrm{R}_{2}}{\mathrm{R}_{2}^{2}}$

$$
=\frac{0.1}{(3)^{2}}+\frac{0.5}{(6)^{2}}=\frac{0.1}{4}
$$

Hence the correct choice is (b)
17. (B) In addition (or substraction), the last significant digit of sum (or difference) occupies the same relative position as the last significant digit of quantities being added (or substracted)
18. (A)
$\vec{v}=u \cos \theta \hat{i}+u \sin \theta \hat{j}-g t \hat{j}$
$\vec{a}=-g \hat{j}$
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{v}}=\mathrm{u} \cos \theta \mathrm{g} \hat{\mathrm{k}}=\mathrm{constant}$
At highest point
$\vec{a}=-g \hat{j}$
$\overrightarrow{\mathrm{v}}=\mathrm{u} \cos \theta \mathrm{i}$
$\Rightarrow \vec{a} \cdot \vec{v}=0$

19. (A)

From $\mathrm{t}=0$ to $5 \mathrm{~S} \quad \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~T}=\mathrm{m}(\mathrm{g}+\mathrm{a})=144 \mathrm{~N}$
Fromt $=5$ to $10 \mathrm{~S} \quad \mathrm{a}=0$
$\mathrm{T}=\mathrm{mg}=120 \mathrm{~N}$
From $t=10$ to $15 S \quad a=4 m / s^{2}$
$\mathrm{T}=\mathrm{m}(\mathrm{g}+\mathrm{a})=168 \mathrm{~N}$
20. (B)

$f=2 a$
$\mathrm{FR}-\mathrm{f} 2 \mathrm{R}=4 \frac{\mathrm{a}}{2 \mathrm{R}}=2 \mathrm{a}$
$\mathrm{F}-2 \mathrm{f}=\mathrm{f} \quad \Rightarrow \quad \mathrm{f}=\frac{\mathrm{F}}{3}=\frac{10}{3} \mathrm{~N}$
21. (2) $\mathrm{E}=\frac{1}{2} \mathrm{kA}^{2} \mathrm{e}^{-\mathrm{bt} / \mathrm{m}}$
$\mathrm{t}=\frac{\ell \mathrm{n} 2}{\mathrm{~b}} \mathrm{~m}=\frac{\ell \mathrm{n} 2}{\ell \mathrm{n} 2} 2=2 \mathrm{sec}$
22.

$P_{a}=P_{0}-\frac{2 T}{r}$
$\mathrm{P}_{\mathrm{b}}=\mathrm{P}_{0}+\frac{2 \mathrm{~T}}{\mathrm{r}}$
also, $\mathrm{P}_{\mathrm{b}}=\mathrm{P}_{\mathrm{a}}+\mathrm{dgh}$
substuting values
$\mathrm{h}=\frac{4 \mathrm{~T}}{\mathrm{rdg}}=\frac{4 \times 0.75}{\left(\frac{1}{2} \times 10^{-3}\right) \times\left(1 \times 10^{3}\right) \times 10}=6 \times 10^{-2} \mathrm{~m}=6 \mathrm{~cm}$
23. (0) Loss in heat from calorimeter + water, as temperature changes from $10^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$
$=\mathrm{m}_{1} \mathrm{C}_{1} 10+\mathrm{m}_{2} \mathrm{C}_{2} 10=1 \times 1 \times 10+1 \times 0.1 \times 10=11 \mathrm{kcal}$ Gain in heat of ice as its temperature changes from $-11^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}=\mathrm{m}_{3} \mathrm{C}_{3} \times 11=2 \times 0.5 \times 11=11 \mathrm{kcal}$
Hence ice and water will coexist at $0^{\circ} \mathrm{C}$ without any phase change
24. (6) $\mathrm{f}^{\prime}=(2 \mathrm{n}-1)\left(\frac{\mathrm{v}}{4 \ell}\right)$
and ℓ is length of pipe.
$\mathrm{f}^{\prime}=\mathrm{n} \times$ fundamental frequency
$\therefore \quad$ We know that human ear can hear frequencies upto $20,000 \mathrm{~Hz}$, hence

$$
20,000=\mathrm{n} \times 1500
$$

$\Rightarrow \mathrm{n}=\frac{20000}{1500} \approx 13$
maximum possible harmonics obtained are
$1,3,5,7,9,11,13$
Hence, man can hear upto 13th harmonic
So number of overtones heard $=7-1=6$
25. 5

[CHEMISTRY]

26. (A) $\frac{\text { Mass of sulphur }}{\text { Mol. mass of compound }} \times 100=\%$ of sulphur
$\therefore \quad\left(\frac{2 \times 32}{\mathrm{M}}\right) \times 100=0.032$
$\therefore \quad \mathrm{M}=2,00,000$
27. (D) Those reaction in which oxidation number of any element do not change not a redox reaction.

$$
\mathrm{AgCl}+\mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl} .
$$

28. (A) $1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}=1 \mathrm{~g} / \mathrm{mL}$. [Since, $1 \mathrm{~m}^{3}=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{~mL}$]. $=1 \mathrm{gm} / \mathrm{cc}$
$6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecule weigh -18 g
$1 \mathrm{H}_{2} \mathrm{O}$ molecule weigh
$\mathrm{d}=\frac{\text { mass }}{\text { volume }}$,
So, volume $=\frac{3 \times 10^{-23} \mathrm{~g}}{1(\mathrm{~g} / \mathrm{mL})}=3 \times 10^{-23} \mathrm{~mL}$.
29. (D) $P E=-\frac{K Z e^{2}}{r}$.
30. (A) Energy of one photon $=\frac{12400}{6200}=2 \mathrm{eV}=2 \times 96$
$=192 \mathrm{KJ} \mathrm{mol}^{-1}$
$\therefore \%$ of energy of photon converted to K.E. of A atoms
$=\frac{192-144}{192} \times 100=\frac{48}{192} \times 100=25 \%$
31. (A) Order of energy \rightarrow Violet $>$ Blue $>$ yellow $>$ red

Order of energy $\rightarrow E_{2 \rightarrow 1}>E_{5 \rightarrow 2}>E_{6 \rightarrow 3}>E_{4 \rightarrow 3}$
\therefore Violet $(2 \rightarrow 1)$, Blue $(5 \rightarrow 2)$, yellow $(6 \rightarrow 3)$, Red $(4 \rightarrow 3)$
32. (D) Let, vol of containers be V \& temp be T
$P_{1}=100 \mathrm{~mm}$

$$
P_{2}=400 \mathrm{~mm}
$$

$\therefore \mathrm{n}_{1}=\frac{\mathrm{P}_{1} \mathrm{~V}}{R T} \quad \& \quad \mathrm{n}_{2}=\frac{\mathrm{P}_{2} \mathrm{~V}}{R T}$
$\therefore \mathrm{n}_{1}+\mathrm{n}_{2}=\frac{\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) \times \mathrm{V}}{\mathrm{RT}}$
After joining two containers final vol $=(\mathrm{V}+\mathrm{V})=2 \mathrm{~V}$ (for gases)
$\therefore \mathrm{P}_{\text {final }}=\frac{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) R T}{\mathrm{~V}_{\text {final }}}=\frac{\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) \times \mathrm{V}}{\mathrm{RT}} \times \frac{\mathrm{RT}}{2 \mathrm{~V}}$ $=\frac{\left(P_{1}+P_{2}\right)}{2}$

$$
=\frac{(100+400) \mathrm{mm}}{2}=250 \mathrm{~mm}
$$

33. (D) Use formula $2 \pi r_{n}=n \lambda$

We can't apply Bohr radius formula for Be^{2+}
$2 \pi r_{n}=n \lambda$
34. (A)
35. (D) $\mathrm{n}_{\mathrm{T}}=\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+$ \qquad

$$
\begin{aligned}
\frac{P_{T} \cdot V_{T}}{R T} & =\frac{P_{1} V_{1}}{R T}+\frac{P_{2} V_{2}}{R T}+\ldots \ldots \ldots \ldots \ldots=\Sigma P_{i} V_{i} \\
P_{T} V_{T} & =\Sigma P_{i} V_{i}
\end{aligned}
$$

$$
=2 P V+\frac{P \cdot V}{2}+\frac{P}{2} \cdot \frac{P}{4}+\frac{P}{4} \cdot \frac{V}{8}+
$$

$$
=2 P V\left[1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\right.
$$

$$
P_{T} V_{T} \quad=2 P V \frac{1}{1-\frac{1}{4}}=2 P V \cdot \frac{4}{3}
$$

$$
V_{T}=V_{1}+V_{2}+V_{3}+
$$

$$
=V+\frac{V}{2}+\frac{V}{4}+\frac{V}{8}
$$

$$
=\mathrm{V}\left[1+\frac{1}{2}+\ldots \ldots \ldots \ldots \ldots \ldots . .\right]=\mathrm{V} \frac{1}{1-\frac{1}{2}}=2 \mathrm{~V}
$$

$$
\therefore \quad P_{T} \cdot 2 V=2 P V \cdot \frac{4}{3}
$$

$$
P_{T}=\frac{4}{3} P
$$

36. (D)
37. (A) Factual
38. (D)
39. (A) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HBr}(\mathrm{g})$

Intial pressures	0	0
10.0 bar		
At equilibrium	$\mathrm{p} / 2$	$\mathrm{p} / 2$

(10.0-p)

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}^{2} \mathrm{HBr}}{\mathrm{p}_{\mathrm{H}_{2}} \times \mathrm{p}_{\mathrm{Br}_{2}}} \\
& 1.6 \times 10^{5}=\frac{(10-\mathrm{p})^{2}}{(\mathrm{p} / 2)(\mathrm{p} / 2)}
\end{aligned}
$$

Taking square root of both sides

$$
\begin{aligned}
& 4 \times 10^{2}=\frac{10-p}{p / 2} \\
& 200 p=10-p
\end{aligned}
$$

$p=\frac{10}{201}$ bar
$\mathrm{p}_{\mathrm{H}_{2}}=\mathrm{p} / 2=\frac{1}{2}\left(\frac{10}{201}\right)$ bar $=2.5 \times 10^{-2}$ bar ;
$\mathrm{P}_{\mathrm{Br}_{2}}=\mathrm{p} / 2=2.5 \times 10^{-2}$ bar ; $\quad \mathrm{P}_{\mathrm{HBr}}=10-\mathrm{p} \approx 10$ bar.
40. (C)
41. (A, $) \mathrm{K}_{\mathrm{p}}=\left(\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}\right)^{4}=2.56 \times 10^{-10} \mathrm{~atm}^{4}$
$\therefore \quad \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=4 \times 10^{-3} \mathrm{~atm}=4 \times 10^{-3} \times 760=3.04$ torr.
Partial pressure of water vapour in air $=\frac{40}{100} \times 12.5=5$
So, the amount of water vapour in air should decrease to decrease value of partial pressure of water vapour from 5 torr to the equilibrium value (3.04 torr).
so, mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ will increase and mass of $\mathrm{CuSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ will decrease.
42. (B) (a) $\quad \mathrm{W}=-\mathrm{nRT} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$

$$
W=-P_{1} V_{1} \ln \frac{V_{2}}{V_{1}}=-14 \times 0.03 \ln \frac{0.06}{0.03} \text { bar } m^{3}=
$$

$-14 \times 0.7 \times 0.03=-\mathbf{0 . 2 9 4}$ bar m 3 Ans.
43. (A) At A and D the temperatures of the gas will be equal, so $\Delta \mathrm{E}=0$,
$\Delta \mathrm{H}=0$
Now $\mathrm{w}=\mathrm{W}_{\mathrm{AB}}+\mathrm{W}_{\mathrm{BC}}+\mathrm{W}_{\mathrm{CD}}=-\mathrm{P}_{0} \mathrm{~V}_{0}-2 \mathrm{P}_{0} \mathrm{~V}_{0} \ln 2+\mathrm{P}_{0} \mathrm{~V}_{0}=$ $-2 P_{0} V_{0} \ln 2$
and $\mathrm{q}=-\mathrm{W}=2 \mathrm{P}_{0} \mathrm{~V}_{0} \ln 2$
44. (B) $\mathrm{CS}_{2}(\ell)+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})$;
$\Delta \mathrm{H}^{\mathrm{o}}{ }_{\text {rxn. }}=5 \times-215=-1075 \mathrm{~kJ}$
$\Delta \mathrm{H}^{\mathrm{rxnn.}}=\Delta \mathrm{H}^{\mathrm{o}}{ }_{\mathrm{f}}\left(\mathrm{CO}_{2}\right)+2 \times \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{SO}_{2}\right)-\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{CS}_{2}\right)$
$\Delta \mathrm{H}^{\mathrm{o}}{ }_{\text {rxn. }}=(-393.5-2 \times 296.8)-(-1075)$
$\Delta \mathrm{H}^{\text {o }}{ }_{\text {rxn. }}=87.9$
45. $\quad(D)=\frac{3 y-4 x}{3} \mathrm{kCal} \mathrm{mol}^{-1}$.
46. (4)

1,3-

47. (3) The cyclic methphosphate ion is

48.

$$
\begin{aligned}
3 \mathrm{Fe}^{\circ}+8 e & \longrightarrow\left(\mathrm{Fe}^{+8 / 3}\right)_{3} \\
{\left[\left(\mathrm{H}^{+}\right)_{2}\right.} & \left.\longrightarrow\left(\mathrm{H}^{\circ}\right)_{2}+2 e\right] \times 4 \\
\hline 3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} & \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}
\end{aligned}
$$

49.

50. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH}_{2}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \cdot \mathrm{CH}=\mathrm{CHCH}_{3}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}$

[MATHEMATICS]

51. On rationalizing; we get ;

$$
\begin{aligned}
\frac{1-\sin x+1+\sin x+2|\cos x|}{1-\sin x-1-\sin x} & =\frac{2(1+|\cos x|)}{-2(\sin x)} \\
& =\frac{1-\cos x}{-(\sin x)}
\end{aligned}
$$

2. Let $x=3 \cos \theta ; \quad y=3 \sin \theta$

$$
z=2 \cos \phi ; \quad t=2 \sin \phi
$$

$\therefore 6 \cos \theta \cdot \sin \phi-6 \sin \theta \cos \phi=6$
$6 \sin (\theta-\phi)=1$
$\sin (\phi-\theta)=1$
$\phi=90^{\circ}+\theta ;$
$\phi-\theta=90^{\circ}$
$\therefore x=3 \cos \theta ; \quad y=3 \sin \theta$
$z=-2 \sin \theta ; \quad t=2 \cos \theta$
$p=x z=-6 \sin \theta \cos \theta=-3 \sin 2 \theta$
$\therefore \quad p_{\text {max }}=3$
53.
$x^{2}+p x+q=0$
Now, $\tan 30^{\circ}+\tan 15^{\circ}=-p$
and $\quad \tan 30^{\circ} \cdot \tan 15^{\circ}=q$
$\therefore \quad \tan 45^{\circ}=\tan \left(30^{\circ}+15^{\circ}\right)$

$$
=\frac{\tan 30^{\circ}+\tan 15^{\circ}}{1-\tan 30^{\circ} \cdot \tan 15^{\circ}}=\frac{-p}{1-q}=1
$$

$\Rightarrow q-p=1$
Hence, $(2+q-p)=3$
54.

$$
\begin{array}{lrl}
& 417 & =17+(n-1) 4 \\
\Rightarrow & 400 & =4(n-1) \\
\Rightarrow & n & =101 \\
\text { Similarly, } & 466=16+(m-1) 5 \\
\Rightarrow & & 450=5(m-1) \\
\Rightarrow & & m=91
\end{array}
$$

Let T_{n} is common to both for some n for which m is an integer.

$$
\begin{aligned}
17+(n-1) 4 & =16+(m-1) 5 \\
1+4 n-4 & =5 m-5 \\
5 m & =4 n+2
\end{aligned}
$$

55.

$$
\begin{aligned}
A & =\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\frac{1}{5^{4}}+\frac{1}{6^{4}} \\
A & =\left(\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots\right)+\frac{1}{2^{4}}\left(\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots\right) \\
A & =B+\frac{1}{16} A \\
\frac{15}{16} A & =B \\
\Rightarrow \frac{A}{B} & =\frac{16}{15}
\end{aligned}
$$

56. $\sin x+\sin 5 x=\sin 2 x+\sin 4 x$
$2 \sin 3 x \cos 2 x=2 \sin 3 x \cos x$
$2 \sin 3 x[\cos 2 x-\cos x]=0$
On solving we get $x=\frac{n \pi}{3}$
57. $M_{1} M_{2}=-1$

$\frac{9-2 a}{a-4} \times \frac{13-2 a}{a-2}=-1$
$117-26 a-18 a+4 a^{2}=-\left(a^{2}-6 a+8\right)$
$5 a^{2}-50 a+125=0$

$$
a=5
$$

So B is $(5,0)$
So area $=\frac{1}{2} A B \times A C=\frac{1}{2} \sqrt{3} \times 3 \sqrt{2}=3$
58. Compute perpendicular distance from $(1,0)$ to the radical axis of two circles.
59.
$2 x-y+1=0$ is tangent.

Slope of line $O A=-\frac{1}{2}$
Equation of $O A,(y-5)=-\frac{1}{2}(x-2)$

$$
2 y-10=-x+2
$$

$$
x+2 y=12
$$

\therefore Intersection with $x-2 y=4$ will give coordinates of centre.
Solving we get $(8,2)$.

$$
\begin{aligned}
\text { Distance } O A & =\sqrt{(8-2)^{2}+(2-5)^{2}}=\sqrt{36+9} \\
& =\sqrt{45}=3 \sqrt{5}
\end{aligned}
$$

60. Total - All four different $=9 \times 10^{3}-9 \cdot 9 \cdot 8 \cdot 7=4464$

Or
Ans. 2204; all 4 digit even number - number of 4 digit even numbers with different digit.
61. ${ }^{13} \mathrm{C}_{10}$ - Number of ways in which he can reject 3 questions from the first five

Or
${ }^{13} \mathrm{C}_{10}-{ }^{5} \mathrm{C}_{3}=286-10=276$
Or
${ }^{5} \mathrm{C}_{3} \cdot{ }^{8} \mathrm{C}_{7}+{ }^{5} \mathrm{C}_{4} \cdot{ }^{8} \mathrm{C}_{6}+{ }^{5} \mathrm{C}_{5} \cdot{ }^{8} \mathrm{C}_{5}=276$.
[Note that ${ }^{5} \mathrm{C}_{3} \cdot{ }^{10} \mathrm{C}_{7}$ is wrong (cases repeat).
62. $2^{n}\left(1+\frac{x}{6}\right)^{n}$
$\Rightarrow \quad T_{r+1}=2^{n \cdot n} C_{r}\left(\frac{x}{6}\right)^{r}$
$\Rightarrow 2^{n} \cdot{ }^{n} C_{7} \cdot \frac{1}{6^{7}}=2^{n} \cdot{ }^{n} C_{8} \cdot \frac{1}{6^{8}}$
$\Rightarrow \quad 6 \cdot{ }^{n} C_{7}={ }^{n} C_{8}$
$\Rightarrow \quad n-7=48$
$\Rightarrow \quad n=55$
63. Let $\left(x^{3}-1\right)^{1 / 2}=y$

$$
\begin{aligned}
\therefore \quad E & =(x+y)^{5}+(x-y)^{5} \\
& =2\left[{ }^{5} C_{0} x^{5}+{ }^{5} C_{2} x^{3} y^{2}+{ }^{5} C_{4} x y^{4}\right]
\end{aligned}
$$

$$
E=2\left[x^{5}+10 x^{3}\left(x^{3}-1\right)+5 x\left(x^{3}-1\right)^{2}\right]
$$

Hence degree is 7 .
64.
65. $\frac{a^{2}}{2}=\lim _{h \rightarrow 0} \frac{\sinh }{h} 1 ; a=\sqrt{2}$
66. . Let $f(x)+g(x)=F(x)$
$f(x)-g(x)=\mathrm{G}(x)$
Since $\lim _{x \rightarrow a} F(x)$ and $\lim _{x \rightarrow a} G(x)$ exists
Hence $\lim _{x \rightarrow a} \frac{F(x)+G(x)}{2}$ and $\lim _{x \rightarrow a} \frac{F(x)-G(x)}{2}$ must exist i.e., $\lim _{x \rightarrow a} f(x) \cdot g(x)$ also exists.
67. . For $x>20, f(x)=x-2 ; g(x)=f(x)-2=x-4$
68. A circle and a parabola can meet at most in fourl points. Thus maximum number of common chords in ${ }^{4} C_{2}$, i.e., 6 .
69. We have $2 a e=13 \sqrt{2}=$ focal length
$\because \quad 2 a=26$
$\Rightarrow a=13$
(By focus-directrix property)
\therefore On putting $a=13$ in equation (i), we get
$2(13) e=13 \sqrt{2}$
$\Rightarrow \quad e=\frac{1}{\sqrt{2}}$
70. $d^{2}=4 a^{2} e^{2}=4\left(a^{2}+b^{2}\right)=4$
$\Rightarrow d=2$
\Rightarrow (a)
71. $z=0 ; \quad z= \pm 1 ; \quad z= \pm i ; \quad z^{3}=\bar{z}$
$\Rightarrow|z|^{3}=|\bar{z}|=|z|$
Note that $z^{n}=|\bar{z}|$ has $n+2$ solutions
Hence, $\quad|z|=0$ or $|z|^{2}=1$
Again $\quad z^{4}=z \bar{z}=|z|^{2}=1$
$\Rightarrow \quad z^{4}=1$
\Rightarrow Total number of roots are 5
Note that the equation $z^{n}=\bar{z}$ will have $(n+2)$ solutions.
73. $y=\frac{x^{2}+x+7}{x+2}$
$\Rightarrow x^{2}+x(1-y)+7-2 y=0$
$\Rightarrow \quad D \geq 0$

$$
\begin{aligned}
(1-y)^{2}-4(7-2 y) & \geq 0 \\
1+y^{2}-2 y-28+8 y & \geq 0 \\
y^{2}+6 y-27 & \geq 0 \\
(y+9)(y-3) & \geq 0
\end{aligned}
$$

\Rightarrow Minimum positive integral value is 3 .
74. Here, we have

$$
\begin{aligned}
& \cos 2 x+c \sin x=2 c-7 \\
\Rightarrow & \left(1-2 \sin ^{2} x\right)+c \sin x=2 c-7 \\
\Rightarrow & 2 \sin ^{2} x-c \sin x+2 c-8=0 \\
\Rightarrow & \sin x=\frac{c \pm \sqrt{c^{2}-8(2 c-8)}}{4} \\
\Rightarrow & \sin x=\frac{c-4}{2} \text { or } 2
\end{aligned}
$$

But $\sin x=2$ (Reject)

So, $-1 \leq \frac{c-4}{2} \leq 1$
$\Rightarrow-2 \leq c-4 \leq 2$
$\Rightarrow 2 \leq c \leq 6$
$\therefore \quad c=2,3,4,5,6$.
75. Equation of any circle through the points of intersection of given circles is :
$\left(x^{2}+y^{2}-6 x+2 y+4\right)+\lambda\left(x^{2}+y^{2}+2 x-4 y-6\right)=0$
$\Rightarrow x^{2}(1+\lambda)+y^{2}(1+\lambda)-2 x(3-\lambda)+2 y(1-2 \lambda)$

$$
+(4-6 \lambda)=0
$$

or $x^{2}+y^{2}-\frac{2 x(3-\lambda)}{(1+\lambda)}+\frac{2 y(1-\lambda)}{(1+\lambda)}+\frac{(4-6 \lambda)}{(1+\lambda)}=0 \ldots$ (i)
Its centre $\left\{\frac{3-\lambda}{1+\lambda}, \frac{2 \lambda-1}{1+\lambda}\right\}$ lies on the line $y=x$
then $\quad \frac{2 \lambda-1}{1+\lambda}=\frac{3-\lambda}{1+\lambda} \Rightarrow \lambda \neq 1$
$\therefore \quad 2 \lambda-1=3-\lambda$
or $\quad 3 \lambda=4$
$\therefore \quad \lambda=\frac{4}{3}$
\therefore Substituting the value of $\lambda=\frac{4}{3}$ in eq. (i), we get the required equation is $7 x^{2}+7 y^{2}-10 x-10 y-12=0$

